
FAST APPROXIMATE NEAREST NEIGHBORS
WITH AUTOMATIC ALGORITHM CONFIGURATION

Marius Muja, David G. Lowe, 2009
Presented by: Gautam Gunjala & Jordan Zhang

Nearest Neighbors?
Given points P={p1, … ,pn} in a vector space X,preprocess
such that given a query point q in X, we can find the KNN of
q in P efficiently.

1-NN example:

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Why KNN? Applications

SIFT: 128-dimensional feature vector. Find
nearest feature vector in DB to match images.
Visual words: Cluster local features into
“words” representing regions of an image.
ML: Classifiers
Compression: Best approximations of
principal components.

Issues

● Performance of algorithms vary.
○ Dimensionality, internal correlations, dataset size.

● Exact NN not much better than linear search
O(Nd) in high dimensions for N scene points,
query dimension d.
○ Must turn to approximate NN, sometimes returns

non-optimal points.

Contributions

● Determine which algorithm to use given a
particular dataset structure.

● Improve the hierarchical k-means algorithm
to tree construction time and speed up
queries by approximation.

Algorithm 1: KD Tree Search

KD Trees Overview

● “k-dimensional trees”
● Split data in half at each level on the axis of

greatest variance
● Fast operations for vectors in small

dimensions
● In high dimensions, we get far fewer splits

per dimension.

Visualizing KD Tree Search

http://upload.wikimedia.org/wikipedia/commons/9/9c/KDTree-animation.gif

Early KD Trees (Freidman et al.)

Introduces an optimized kd tree algorithm
● O(N) space
● O(kN log N) tree build time
● O(log N) search

“An algorithm for finding best matches in logarithmic expected time.” Freidman,
J. H. et al. (1977)

Early KD Trees (Arya et al.)

Introduces the idea of an ε-approximate
nearest neighbor
� ε > 0, � δ ≤ d*ceil[1+6d/ε]d such that the
nearest neighbor can be returned in O(δ log N)
time

“An optimal algorithm for approximate nearest neighbor searching in fixed
dimensions.” Arya, S. et al. (1998)

Early KD Trees (Beis & Lowe, 1997)

Achieved a fast approximate nearest neighbor
algorithm by fixing the number of leaf nodes
examined
Slightly faster than the ε-approximate nearest
neighbor method of Arya et al.

Randomized KD Trees

● First implemented by Silpa-Anan & Hartley
(2008)

● Faster than traditional KD trees.
● Memory intensive: must build multiple trees

for a data set.

Randomized KD Trees (Construction)

● Multiple trees constructed at once
● One of the top D dimensions of greatest

variance randomly selected for each tree
● Data split on that dimension
● D = 5 used for testing
● Varying structure allows each tree search to

be independent

Randomized KD Trees

● Single priority queue used to search m trees
at once; elements ordered by distance from
query point

● Fixed number, n, of nodes examined
(number based on user input search
precision)

● On average, n/m nodes examined per tree
● Best candidates returned

Randomized KD Trees Efficiency

● Performance
improves up to 101.3
≈ 20 trees

● 100,000 SIFT
features used in test

● Memory overhead
increases linearly

Algorithm 2: Hierarchical K-
Means

Hierarchical K-Means
1. Precompute: k-means

cluster into K clusters.
Then k-means cluster
each of these recursively
to build a tree.

2. Query: Traverse graph w/
priority queue, limit
number of leaf nodes
checked.

 “Scalable recognition with a vocabulary tree”, Nister, Stewenius, 2006

Hierarchical K-Means
Standard K-Means: Lloyd’s algorithm.

http://en.wikipedia.org/wiki/K-means_clustering

Hierarchical K-Means
Single level K-means is O(Nkld)** for N data points, k
means, l iterations of improvement.
The complexity of K-means tree is then
O(Nkld log(N)) by Master theorem.

** “Efficient clustering and matching for object class recognition,” Leibe et al. 2006

Hierarchical K-Means

Hierarchical k-means tree
projected into 2-D. Search
depth is labeled from red
shallowest to green
deepest.

“City Scale Location Recognition” Schindler et al. 2007

Hierarchical K-Means
Improvement: Order of magnitude speedup by using only 7 iterations in each
clustering step. 90% of convergence accuracy.

Hierarchical K-Means
Improvement: Best Bin First by distance of cluster center.
1. Greedily traverse once to a leaf node. Add unexplored

branches along path to a priority queue.
2. Restart another greedy traversal from the cluster branch

closest to query (can be in the middle of the tree)

Stops after a given number of leaf nodes (points) are
checked.

Data Dimensionality

Data Dimensionality

Queries on Trevi Fountain patch
data set with different patch sizes.
Demonstrates that even for high
dimensional data (64x64 = 4096
dimensions in a patch) that
similarity in a small number of
dimensions provides strong
enough evidence to determine
overall patch similarity.

Choosing an Algorithm

Data features:
● Correlations between dimensions.
● Size of data set.
Algorithm features:
● Number of kd-trees.
● Branching factor of k-means.
● Number of iterations in k-means clustering step.

Choosing an Algorithm

s -- search time
b -- tree build time
wb -- build time weight
m = mt/md -- ratio of tree memory to raw data
wm -- tree memory weight

Choosing an Algorithm

(s + wbb)opt -- optimal time cost if memory
doesn’t matter.
Computed during following optimization
process.

Choosing an Algorithm

For a given data set, compute cost for:
● {1,4,8,16,32} kd trees
● {16,32,64,128,256} k-means branching

factor.
● {1,5,10,15} k-means clustering iterations
May check 1/10 of the data set and still be
close to optimum.

Choosing an Algorithm

Optimize using simplex locally after finding the
best option from the previous step.

Expensive to optimize, but results for each type
of dataset can simply be stored.

Results

Results

Results

In Conclusion

● Improved hierarchical k-means tree search
algorithm

● Identification of two best nearest neighbor
search algorithms for any data set

● Automatic choice of algorithm and optimal
parameters

● Algorithms contained in public domain library

