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Nearest Neighbors?
Given points P={p1, … ,pn} in a vector space X,preprocess 
such that given a query point q in X, we can find the KNN of 
q in P efficiently.

1-NN example:

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm



Why KNN? Applications

SIFT: 128-dimensional feature vector. Find 
nearest feature vector in DB to match images.
Visual words: Cluster local features into 
“words” representing regions of an image.
ML: Classifiers
Compression: Best approximations of 
principal components.



Issues

● Performance of algorithms vary.
○ Dimensionality, internal correlations, dataset size.

● Exact NN not much better than linear search 
O(Nd) in high dimensions for N scene points, 
query dimension d.
○ Must turn to approximate NN, sometimes returns 

non-optimal points.



Contributions

● Determine which algorithm to use given a 
particular dataset structure.

● Improve the hierarchical k-means algorithm 
to tree construction time and speed up 
queries by approximation.



Algorithm 1: KD Tree Search



KD Trees Overview

● “k-dimensional trees”
● Split data in half at each level on the axis of 

greatest variance
● Fast operations for vectors in small 

dimensions
● In high dimensions, we get far fewer splits 

per dimension.



Visualizing KD Tree Search 

http://upload.wikimedia.org/wikipedia/commons/9/9c/KDTree-animation.gif



Early KD Trees (Freidman et al.)

Introduces an optimized kd tree algorithm
● O(N) space
● O(kN log N) tree build time
● O(log N) search

“An algorithm for finding best matches in logarithmic expected time.” Freidman, 
J. H. et al. (1977)



Early KD Trees (Arya et al.)

Introduces the idea of an ε-approximate 
nearest neighbor 
� ε > 0, � δ ≤ d*ceil[1+6d/ε]d such that the 
nearest neighbor can be returned in O(δ log N) 
time

“An optimal algorithm for approximate nearest neighbor searching in fixed 
dimensions.” Arya, S. et al. (1998)



Early KD Trees (Beis & Lowe, 1997)

Achieved a fast approximate nearest neighbor 
algorithm by fixing the number of leaf nodes 
examined
Slightly faster than the ε-approximate nearest 
neighbor method of Arya et al.
 



Randomized KD Trees

● First implemented by Silpa-Anan & Hartley 
(2008)

● Faster than traditional KD trees.
● Memory intensive: must build multiple trees 

for a data set.



Randomized KD Trees (Construction)

● Multiple trees constructed at once
● One of the top D dimensions of greatest 

variance randomly selected for each tree
● Data split on that dimension
● D = 5 used for testing
● Varying structure allows each tree search to 

be independent 



Randomized KD Trees

● Single priority queue used to search m trees 
at once; elements ordered by distance from 
query point

● Fixed number, n, of nodes examined 
(number based on user input search 
precision)

● On average, n/m nodes examined per tree 
● Best candidates returned



Randomized KD Trees Efficiency

● Performance 
improves up to 101.3 
≈ 20 trees

● 100,000 SIFT 
features used in test

● Memory overhead 
increases linearly



Algorithm 2: Hierarchical K-
Means



Hierarchical K-Means
1. Precompute: k-means 

cluster into K clusters. 
Then k-means cluster 
each of these recursively 
to build a tree.

2. Query: Traverse graph w/ 
priority queue, limit 
number of leaf nodes 
checked.

 “Scalable recognition with a vocabulary tree”, Nister, Stewenius, 2006



Hierarchical K-Means
Standard K-Means: Lloyd’s algorithm.

http://en.wikipedia.org/wiki/K-means_clustering



Hierarchical K-Means
Single level K-means is O(Nkld)** for N data points, k 
means, l iterations of improvement.
The complexity of K-means tree is then
O(Nkld log(N)) by Master theorem.

** “Efficient clustering and matching for object class recognition,” Leibe et al. 2006



Hierarchical K-Means

Hierarchical k-means tree 
projected into 2-D. Search 
depth is labeled from red 
shallowest to green 
deepest.

“City Scale Location Recognition” Schindler et al. 2007



Hierarchical K-Means
Improvement: Order of magnitude speedup by using only 7 iterations in each 
clustering step. 90% of convergence accuracy.



Hierarchical K-Means
Improvement: Best Bin First by distance of cluster center.
1. Greedily traverse once to a leaf node. Add unexplored 

branches along path to a priority queue.
2. Restart another greedy traversal from the cluster branch 

closest to query (can be in the middle of the tree)

Stops after a given number of leaf nodes (points) are 
checked.



Data Dimensionality



Data Dimensionality

Queries on Trevi Fountain patch 
data set with different patch sizes. 
Demonstrates that even for high 
dimensional data (64x64 = 4096 
dimensions in a patch) that 
similarity in a small number of 
dimensions provides strong 
enough evidence to determine 
overall patch similarity.



Choosing an Algorithm

Data features:
● Correlations between dimensions.
● Size of data set.
Algorithm features:
● Number of kd-trees.
● Branching factor of k-means.
● Number of iterations in k-means clustering step.



Choosing an Algorithm

s -- search time
b -- tree build time
wb -- build time weight
m = mt/md -- ratio of tree memory to raw data
wm -- tree memory weight



Choosing an Algorithm

(s + wbb)opt -- optimal time cost if memory 
doesn’t matter.
Computed during following optimization 
process.



Choosing an Algorithm

For a given data set, compute cost for:
● {1,4,8,16,32} kd trees
● {16,32,64,128,256} k-means branching 

factor.
● {1,5,10,15} k-means clustering iterations
May check 1/10 of the data set and still be 
close to optimum.



Choosing an Algorithm

Optimize using simplex locally after finding the 
best option from the previous step.

Expensive to optimize, but results for each type 
of dataset can simply be stored.



Results



Results



Results



In Conclusion

● Improved hierarchical k-means tree search 
algorithm

● Identification of two best nearest neighbor 
search algorithms for any data set

● Automatic choice of algorithm and optimal 
parameters

● Algorithms contained in public domain library


